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Abstract
We study hierarchies of replica-symmetry-breaking solutions of the
Sherrington–Kirkpatrick model. Stationarity equations for order parameters of
solutions with an arbitrary number of hierarchies are set and the limit to infinite
number of hierarchical levels is discussed. In particular, we demonstrate how
the continuous replica-symmetry breaking scheme of Parisi emerges and how
the limit to infinite-many hierarchies leads to equations for the order-parameter
function of the continuous solution. The general analysis is accompanied by
an explicit asymptotic solution near the de Almeida–Thouless instability line
in the nonzero magnetic field.

PACS numbers: 64.60.De, 75.50.Lk

1. Introduction

The solution of the Sherrington–Kirkpatrick (SK) model, standing for a mean-field theory of
Ising spin glasses, is now almost complete. It took more than 30 years from the introduction
of the model [1] before we understood its solution and in particular its physical meaning.
The core of the mean-field solution was set rather early by Parisi in his replica-symmetry
breaking (RSB) scheme [2]. Parisi used, however, the replica trick and a formal procedure
of breaking a symmetry in the (unphysical) replica space when the limit to zero number of
mathematical replicas is performed. Since then theorists have striven hard to understand the
physical meaning of the Parisi solution and to find alternative ways of its derivation in order
to prove its completeness.

The effort paid off. We have now reached solid understanding of the physics behind the
RSB solution [3] and there is a mathematical proof of exactness of the RSB construction in
the SK model [4, 5]. This is not the only output of the extensive investigation of mean-field
spin-glass systems. The statistical methods developed by studying the infinite-range spin-glass
models found broad application in interdisciplinary fields such as informatics, optimization
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and computational complexity, econophysics and biophysics and other frustrated complex and
open systems [6, 7].

Although our understanding of the construction of mean-field theories of spin glasses
on regular lattices is in global attributes satisfactory, there still remain a few issues that
deserve a more detailed and specific clarification. One of such questions is the eventual
form of the replica-symmetry-breaking solution. Any derivation of a stable equilibrium spin-
glass state uses the so-called discrete RSB scheme with finite-many hierarchical levels of
the order parameters. Parisi assumed that in the SK model one needs infinite number of
RSB hierarchies and derived an implicit formula for the free energy of the SK model with a
continuous order-parameter function. The latter is now considered as the exact solution of the
SK model. Unfortunately, the Parisi formula for the averaged free energy of the SK model is
only implicit. Moreover, the mathematical proof of exactness of the RSB construction does not
specify whether a discrete or the continuous RSB scheme produces the maximal free energy.
There are models, Potts [8] or p-spin glass models [11] among others, for which one-step
RSB solution seems to be stable in a finite region of temperatures. It is hence important
to understand when one should use the discrete RSB scheme with a finite number of order
parameters and when the continuous limit is appropriate.

The aim of this paper is to analyse properties of the discrete RSB scheme in the SK model
leading to solutions with a finite number of hierarchical levels of the order parameters. The
emphasis is laid on the way the discrete scheme goes over to the continuous Parisi solution in the
limit of infinite-many RSB hierarchies. We show that the continuous limit is a process during
which we reduce the number of degrees of freedom to a single continuous order-parameter
function on a compact interval. We derive the continuous limit of the stationarity equations
maximizing the free energy with large but finite numbers of RSB hierarchies and thereby we
obtain a functional equation for the order-parameter function from the Parisi solution. We
first derive the equations in the continuous limit generally and then we illustrate the process of
building the continuous limit on the asymptotic expansion near the de Almeida–Thouless (AT)
instability line of the SK model in the external magnetic field. We explicitly evaluate the leading
asymptotic contribution to the Parisi order-parameter function. There exist expansions of the
Parisi solution around the critical temperature Tc without [9] as well as with an applied magnetic
field [10]. Here we expand the RSB solution for both discrete and continuous versions but not
around the critical temperature (zero magnetic field) but around the replica-symmetric (RS)
solution.

2. Discrete replica-symmetry breaking scheme

There is no direct way to the Parisi free energy surpassing the concept of discrete replicas in
one or another way. We can derive the continuous RSB solution of the SK model in a number
of ways, but we always have to start up with a finite number o replicas, mathematical or real.
One cannot avoid analytic continuation of discrete parameters and quantities defined on a
finite-many times replicated phase space to continuously distributed quantities of the Parisi
solution. This can, however, be done only for a specific structure of the replicated phase space,
namely a vertical tree containing only child replicas within parental ones. Communication
between replicas of the same generation materializes exclusively via one or more antecedent
generations of replicas (common ancestors). The phase space forms a hierarchical ultrametric
structure. It is then natural to start the investigation of the RSB construction with the discrete
scheme.
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Table 1. Comparison of our real-replica and the replica-trick notations for the set of the RSB order
parameters.

Real-replica notation Replica-trick notation

Overlap susceptibility χl Block order parameter ql

χl = qK+1−l − q0

Multiplicity of replica generations ml Replica block size ml

Decreasing sequence Increasing sequence
ml ←→ mK+1−l

2.1. Hierarchical free energy and order parameters

A hierarchical character of the phase space of the SK model is expressed in a hierarchy of order
parameters standing for generations of the replicated spins. Each generation is characterized
by a pair of numbers ml and ql from the replica trick or by ml and χl from the real-replica
approach of [12]. In the replica trick, parameters ml stand for block sizes with the same value
of parameter ql . In the real-replica approach, parameters ml stand for multiplicity of replica
generations and χl for local overlap susceptibilities of two different spin replicas. We use
here the latter notation with a decreasing sequence of overlap susceptibilities χl as well as a
decreasing sequence of parameters ml , see table 1 for a transcript of the two notations. A phase
space with K hierarchies (KRSB) is characterized in addition to the RS order parameter q also
by K pairs {ml, χl} with l = 1, . . . , K . All these parameters are determined from stationarity
equations for a hierarchical free energy with K hierarchies.

It is not the set of pairs {ml, χl} that explicitly appears in the hierarchical free energy.
In fact, we can construct a free-energy functional for either χl,�ml = ml−1 − ml or ml,

�χl = χl − χl+1 for l = 1, . . . , K with boundary conditions m0 = 1 and χK+1 = 0. Both set
of parameters ml and χl form a decreasing sequence. The general formula for the hierarchical
free energy with the former pairs was derived in [13] while the latter in [12] that we use also
in this paper.

The free energy with K hierarchies is characterized by 2K + 1 order parameters. It is the
RS order parameter q and K pairs {ml,�χl}, l = 1, . . . , K . The averaged free-energy density
with these order parameters reads

f K(q,�χ1, . . . ,�χK;m1, . . . , mK) = − 1

β
ln 2 − β

4

(
1 − q −

K∑
l=1

�χl

)2

+
β

4

K∑
l=1

ml�χl

[
2

(
q +

K∑
i=l+1

�χi

)
+ �χl

]
− 1

β

∫ ∞

−∞
Dη lnZK. (1)

A hierarchical structure of this free energy is evident from the way its interacting part lnZK

is constructed. It is the final state in a sequence of partition functions defined inductively

Zl =
[∫ ∞

−∞
DλlZml

l−1

]1/ml

, (2)

with the initial condition Z0 = cosh
[
β
(
h + η

√
q +

∑K
l=1 λl

√
�χl

)]
. We abbreviated the

Gaussian differential Dλ ≡ dλ exp{−λ2/2}/√2π .
Free energy (1) is a generalization of 1RSB and 2RSB solutions obtained by Parisi.

It is a generating functional for all physical quantities of a K-level hierarchical solution.
The physical values of the order parameters q,�χ1,m1, . . . ,�χK,mK are determined from
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stationarity equations maximizing free energy f K . To represent the corresponding stationarity
equations we introduce a set of hierarchical density matrices in the space of fluctuating random
fields λl . We define ρl(η, λK, . . . , λl) = Zml

l−1

/ 〈
Zml

l−1

〉
λl

where 〈X(λl)〉λl
= ∫ ∞

−∞ DλlX(λl).

We further introduce short-hand notations t ≡ tanh
[
β
(
h + η

√
q +

∑K
l=1 λl

√
�χl

)]
and

〈t〉l (η; λK, . . . , λl+1) = 〈ρl . . . 〈ρ1t〉λ1 . . .〉λl
.

It is now a straightforward task to derive equations for the order parameters from the
saddle-point equations of functional f K . We obtain

q = 〈〈t〉2
K

〉
η
, (3)

�χl = 〈〈〈t〉2
l−1

〉
K

〉
η
− 〈〈〈t〉2

l

〉
K

〉
η
, (4)

ml�χl = 4

β2

〈〈ln Zl−1〉K〉η − 〈〈ln Zl〉K〉η
2
(
q +

∑K
i=l+1 �χi

)
+ �χl

(5)

where index l = 1, . . . , K .
The discrete RSB scheme does not determine a single solution of the original spin model,

but rather a set of solutions labelled by the number of hierarchies explicitly taken into account.
Parameter K is hence a free index that is not determined from the free energy. Its physical value
is fixed by thermodynamic stability. We take so many hierarchies of replicas into account till
we reach a stable or marginally stable solution. Stable solutions with K hierarchies obey K + 1
stability conditions. They are a generalization of the de Almeida–Thouless stability condition
of the replica-symmetric (K = 0) solution [14]. They reflect non-negativity of eigenvalues of
the spin-glass susceptibility [15] and read

�K(l) = 1 − β2

〈〈〈
1 − t2 +

l∑
i=1

mi

(〈t〉2
i−1 − 〈t〉2

i

)〉2

l

〉
K

〉
η

� 0. (6a)

and

�K(0) = 1 − β2〈〈(1 − t2)2〉K〉η � 0. (6b)

These stability conditions are a non-replica version of the stability criteria set on the RSB
solution within the replica trick [16, 17].

With the above equations we are equipped with all the necessary tools for identifying
(marginally) stable solutions of the SK model. In particular, we can decide whether only a
finite number of replica generations is sufficient to reach a stable or marginally stable solution
or whether we must go to infinite-many replicas and the Parisi continuous limit. Parisi deduced
from 1RSB and 2RSB solutions and confirmed by a truncated model [2] that indeed we need
infinite number of replica hierarchies. We have recently confirmed this conclusion by solving
exactly stationarity equations (3)–(5) in the asymptotic region near the critical point in zero
magnetic field [18]. We now extend this asymptotic solution by involving the nonzero external
magnetic field.

2.2. Asymptotic solution near the de Almeida–Thouless instability line

Proximity of the instability line naturally introduces a small parameter that we use in an
expansion of equations (3)–(5) for the order parameters. If we denote t0 = tanh[β(h+η

√
q0)],

where q0 = 〈
t2
0

〉
η

is the order parameter in the replica-symmetric solution, we can define the
small parameter to be

α = β2
〈(

1 − t2
0

)2〉
η
− 1 > 0. (7)
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It measures the distance from the AT line as well as a deviation from the RS solution. Since the
magnetic field is nonzero, only χl for l = 1, . . . , K and �ml for l = 2, . . . , K are small. The
parameters q and ml are not small unlike the case of zero magnetic field [18]. We determine
the dominant asymptotic behaviour of the corrections to the RS solution in the small parameter
α for an arbitrary number of hierarchical levels K.

To derive the leading asymptotic behaviour we must expand equations (3)–(5) to first two
nontrivial orders of the small parameter α. We first need to know the two leading asymptotic
orders of the parameter qEA = q +

∑K
l=1 �χl = q + χ1 to be able to determine the leading

asymptotic behaviour of �χl and �ml for l > 1. It means, if we want to go beyond the
one-step RSB solution.

The asymptotic limit of the RSB solutions with finite numbers of hierarchies practically
amounts to an expansion in powers of differences �χl . Each integral over the random field
λl must be expanded at least up to �χ3

l to determine the leading asymptotic behaviour of the
order parameters. One can rather easily calculate the leading orders of χ1 and ml . These two
parameters do not depend in the leading asymptotic order on the number of hierarchies used
and are determined from 1RSB. To see the dependence of the order parameters on K means to
generate separate equations for single �χl with l > 1. We must, however, lift up a degeneracy
in the stationarity equations and expand them up to �χ4

l . It is a rather tedious task and we
accomplished it with the aid of the programme MATHEMATICA. The expansion proceeds
in the same manner we presented in [18]. We hence do not repeat the detailed steps of the
expansion but rather summarize the principal findings.

We must first expand the RS parameter q to the two lowest nontrivial orders in α. The
solution is then used to determine the lowest asymptotic order of χ1 and ml . We obtain
ml = m + O(α) with

m =
2
〈
t2
0

(
1 − t2

0

)2〉
η〈(

1 − t2
0

)3〉
η

(8)

and

χ1 = α

2β2m

1

1 − 3β2
〈
t2
0

(
1 − t2

0

)2〉
η

+ O(α2). (9)

These two parameters do not depend on the number of hierarchical levels used. We remind
that χ1 = qEA − q. The parameter m is of order unity even at the boundary of the spin-glass
phase (AT line) where the small parameter α vanishes. Its temperature dependence at the AT
line is plotted in figure 1.

The other parameter of the 1RSB solution, χ1, is proportional to the small parameter α

from equation (7) and vanishes at the boundary of the spin-glass phase. Its ratio χ1/α at the
AT line as a function of temperature is plotted in figure 2. The ratio diverges in zero magnetic
field where m = 0 and both χ1 and m are linearly proportional to θ = (Tc − T )/Tc, while
α ∼ 2θ2 [18].

It is interesting to note that the asymptotic solution near the AT line reduces to 1RSB in
nonzero magnetic fields. The RS solution can be asymptotically correct in the leading order
only in zero field where the parameter m1 = 0. In nonzero fields one has to go to 1RSB even
in the lowest asymptotic order below the instability line. The existence of the AT line hence
indicates a replica-symmetry breaking. The instability in the magnetic field does not however
specify whether the discrete or the continuous RSB scheme applies in the low-temperature
phase. Note also that condition χ1 > 0 does not necessarily indicate a deviation from the
RS solution. If m1 = 0 then qEA = q + χ1 = qRS. Only if both parameters χ1 and m1 are
simultaneously positive the physics of the RS solution is changed to 1RSB.

5
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Figure 1. The limiting value of parameter m from 1RSB at the AT instability line as a function of
temperature. The temperature scale was chosen so that Tc(h = 0) = 1.

Figure 2. Proportionality of the order parameter χ1 to the small parameter α along the AT line.
The ratio diverges at the critical temperature Tc = 1 as (Tc −T )−1 and vanishes at zero temperature
as T 2.

To disclose the leading asymptotic behaviour of each separate parameter �χl and �ml

for l = 1, . . . , K we must go beyond 1RSB and the leading orders in parameters m and χ1. It
is firstly the fourth order in α in equation (5) from which we find that �χl

.= χ1
1

/
K and

mK
l

.= m1
1 +

K + 1 − 2l

K
�m (10a)

where we added a superscript to specify the number of hierarchical levels used to determine
the order parameters χl,ml . Further on, we introduced a parameter independent of the number
of hierarchies �m = m2

1 − m2
2. This parameter has an explicit asymptotic representation:

�m
.=

β2χ1
〈(

1 − t2
0

)2(
2
(
1 − 3t2

0

)2
+ 3

(
t2
0 − 1

)
m

(
8t2

0 +
(
t2
0 − 1

)
m

))〉
η〈(

1 − t2
0

)3〉
η

. (10b)

Both parameters χ1 and �m are linearly proportional to α. The former, however, exists
already in 1RSB, while the latter first emerges in 2RSB. Since they do not depend on the

6
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Figure 3. The leading-order difference �m factorized by the small parameter α to make it of order
unity along the AT line. It diverges at the critical temperature Tc = 1 as (Tc − T )−1.

number of hierarchies used and the latter determines a uniform distribution of parameters ml for
l = 3, . . . , K , we demonstrated that all characteristic features of the asymptotic solution near
the AT instability line are contained already in 2RSB. What was, however, highly nontrivial
was to unveil equidistant distributions of both parameters χl and ml . Temperature dependence
of the ratio �m/α along the AT line is plotted in figure 3.

Finally we evaluated the instability conditions from equations (6a) and (6b). They all
coincide in the leading asymptotic order in α. We find that all the discrete RSB solutions are
unstable. Instability of the discrete scheme is measured by the small parameter α. The RS
(K = 0) solution has the instability expressed via the AT condition

�0 = 1 − β2
〈(

1 − t2
0

)2〉
η

= −α. (11a)

The RSB solutions (K � 1) improve upon stability of the RS solution in that their instability
is proportional to α2. We derived the following explicit expression

�K = − 2β2

3K2

χ1�m

m + 2
(11b)

where �m was defined in equation (10b). The difference in the order of magnitude in the
instability of the RS and RSB solutions is caused by the existence of the nonzero parameter m
at the AT line where χl = 0. It is hence impossible for the RS solution without m to reproduce
the exact solution in the nonzero magnetic field even asymptotically with α → 0.

The stability conditions of the discrete RSB solutions manifest that only the continuous
limit with K → ∞ becomes marginally stable. The instability of 1RSB is plotted in
figure 4. The leading-order term diverges at the critical temperature Tc = 1, since the
instabilities of the RS as well as of the discrete RSB solutions in zero magnetic field are
proportional to α ∝ (Tc − T )2

/
T 2

c [18].

3. Continuous replica-symmetry breaking

The above asymptotic solution corroborates the conclusion of earlier calculations in zero
magnetic field that to reach a stable and consistent solution we need infinite-many hierarchical
levels in free energy (1). It is not generally guaranteed that the limit to infinite hierarchies of
the discrete RSB scheme must lead to the continuous solution. The distribution of parameters
�χl = χ1/K calculated in the preceding section explicitly manifests that the Parisi solution

7
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Figure 4. Leading asymptotic contribution to the instability of 1RSB at the AT line. It diverges at
the critical temperature as (Tc − T )−2.

is the only possible marginally stable solution of the SK model in the external magnetic field
near the AT line. Moreover, one of us has recently shown that the Parisi solution with a
continuous order-parameter function can always be constructed and is marginally stable in the
entire spin-glass phase [19]. Here we show that the saddle-point equations of the free energy
from [19] result also from the continuous limit of stationarity equations (3)–(5) of the discrete
scheme.

3.1. Homogeneous limit to infinite number of hierarchies

The basic assumption of the continuous limit of the discrete RSB scheme with the number
of hierarchies K → ∞ is a uniform distribution of the differences �χl . That is, they
are independent of l and are proportional to K−1. We then can introduce a differential
dx = limK→∞ χ1/K . It is not, however, necessary that all parameters �χl are equal in the
asymptotic limit K → ∞ to end up in a continuous theory. The differences may vary by
factors of order unity.

It is convenient to map the hierarchy indices l on interval [0, 1] by introducing a continuous
variable x = limK→∞(K − l)/K . The continuous version of the hierarchical free energy
results from a process in which we systematically neglect all higher than linear orders of the
differential dx [20]. It means that in the continuous limit we take into account only the second
moments of the Gaussian integrations over the auxiliary fields λl . We first apply this procedure
to the interacting free energy (1) and then to stationarity equations (3)–(5).

We denote gl ≡ lnZl . Using the notation from the preceding section we obtain by cutting
the expansion of equation (2) at the order O(�χl)

gl = ln
〈
Zml−1

l−1

〉1/ml−1

λl
→ 1

ml−1
ln

{
Zml−1

l−1

[
1 +

ml−1

2
�χl

(
g′′

l−1 + ml−1g
′2
l−1

) ]}
= gl−1 +

�χl

2

(
g′′

l−1 + ml−1g
′2
l−1

)
. (12)

We denoted g′
l ≡ ∂gl/∂h. The derivatives with respect to the magnetic field stand for the

action of the fluctuating field λl when only the second moment contributes to the integral. In

8
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the continuous limit we obtain the Parisi differential equation by replacing the hierarchy index
l by the continuous variable x

∂g(x, h)

∂x
= χ̇ (x)

2

[
∂2g(x, h)

∂h2
+ m(x)

(
∂g(x, h)

∂h

)2
]

. (13)

We denoted χ̇ (x) ≡ dχ(x)/dx. The right-hand side of equation (13) has the opposite sign
to the original Parisi equation, which is caused by a different assignment of the continuous
variable x to the hierarchy index. Parisi used xP = limK→∞ l/K .

To derive the continuous limit of the stationarity equations we must first find a reduction
of the density matrix ρl in the limit of infinite hierarchical levels. Since only a linear term in
�χl contributes and the density matrix is normalized to unity we have

ρl → 1 + ml−1g
′
l−1�χl

∂

∂h
. (14)

The operator of the derivative with respect to the magnetic field stands for the random variable
λl . Integrals over this random variable of functions f (λl, h) weighted with the density matrix
ρl reduce in the continuous limit to

〈ρlf (λl, h)〉λl
= f (0, h) + ml−1�χlg

′
l−1

∂f (0, h)

∂h
+

�χl

2

∂2f (0, h)

∂h2
. (15)

We need to evaluate multiple integrals over a number of random fields λl . We denote

fl,i = 〈
ρl+i . . . 〈ρl+1f 〉λl+1

. . .
〉
λl+i

(16a)

and using rule (15) we end up with

fl,i+1 = 〈ρl+i+1fl,i〉λl+i+1 = fl,i + �χl+i+1
[
ml+ig

′
l+if

′
l,i + 1

2f ′′
l,i

]
. (16b)

The increment in the second index can again be represented in the continuous limit via a
differential equation

∂fl(X, h)

∂X
= χ̇(X)

[
ml(X)

∂g(X, h)

∂h

∂fl(X, h)

∂h
+

1

2

∂2fl(X, h)

∂h2

]
. (17)

The solution of the above equation can be represented in form of a ‘time-ordered’ exponential
with differential operators [19]:

fx(X, h) = Ty exp

{∫ X

x

dy χ̇(y)

[
1

2
∂2
h̄

+ m(y)g′(y, h + h̄)∂h̄

]}
fx(0, h + h̄)

∣∣∣∣
h̄=0

. (18)

The ordering operator Ty

Ty exp

{∫ b

a

dy Ô(y)

}
≡ 1 +

∞∑
n=1

∫ b

a

dy1

∫ y1

a

dy2 . . .

∫ yn−1

0
dyn Ô(y1) . . . Ô(yn) (19)

orders products of y-dependent non-commuting operators from left to right in a y-decreasing
succession. It is a standard tool used in many-body quantum theory to represent the
time-dependent perturbation expansion. It is easy to check that function fx(X, h) obeys
equation (17).

With the aid of solution (18) we can represent any physical quantity in the continuous
limit. First among them are the equations for the order parameters.

9
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3.2. Stationarity equations and stability conditions

To derive an equation for the RS order parameter q we simply put fx(0, h) = t (h) ≡ tanh(βh).
We obtain from equation (18)

t (X, h) = Ty exp

{∫ X

0
dy χ̇(y)

[
1

2
∂2
h̄

+ m(y)g′(y, h + h̄)∂h̄

]}
t (h + h̄)

∣∣∣∣
h̄=0

. (20)

Using this representation in equation (3) we reach at a generalization of the RS relation

q = 〈t (1, h + η
√

q)2〉η. (21)

To evaluate the right-hand side of equation (4) we realize that〈
ρl 〈t〉2

l−1

〉
λl

− 〈ρl 〈t〉l−1〉2
λl

→ �χl 〈t〉′2l−1

from which we find with the aid of integral representation (18)

χ̇ (x) = χ̇ (x)

〈
Ty exp

{∫ 1

x

dy χ̇(y)

[
1

2
∂2
h̄

+ m(y)g′(y, h + h̄)∂h̄

]}

× (∂h̄t (x, hη + h̄))2

∣∣∣∣
h̄=0

〉
η

. (22)

We denoted hη = h + η
√

q. Equation (22) is fulfilled for all x ∈ [0, 1]. It essentially
determines the functional dependence χ̇(x). We know from the discrete scheme that χ̇ (x) > 0.

The last relation to be rewritten in the continuous limit is equation (5). It is not difficult
to reach a representation

m(x)(q + χ(1) − χ(x)) = m(x)

〈
Ty exp

{ ∫ 1

x

dy χ̇(y)

×
[

1

2
∂2
h̄

+ m(y)g′(y, h + h̄)∂h̄

]}
t (x, hη + h̄)2

∣∣∣∣
h̄=0

〉
η

(23)

that now determines the functional dependence m(x). Again from the discrete RSB scheme
we know that ṁ(x) < 0. The two functional equations (22) and (23) allow for a trivial solution
making thereby the RS solution part of the general RSB scheme.

The derived equations for the continuous version of the order parameters from the discrete
RSB scheme enable us to understand how we get rid of one functional order parameter. Namely,
the function χ̇(x) appears in all physical quantities only under integrals over the index variable
x. We hence can redefine the differential dx → dχ = dx χ̇(x), since χ̇(x) > 0. We do not
need to know the point-wise dependence χ̇(x) to determine physical properties of the low-
temperature spin-glass state. We hence can transform the defining interval x ∈ [0, 1] to a new
one χ ∈ [0, X], where X = χ(1) � 1. The largest value of χ(x) is the only parameter we
need to know from this function. It must be determined from a stationarity equation and is
related to the Edwards–Anderson parameter by an equation qEA = q + X. When we resign
on the explicit dependence χ̇ (x) we also have to disregard equation (22). Only stationarity
equations for q and m(χ), equations (21) and (23), respectively, remain then relevant. They
coincide with the equations derived from stationarity conditions imposed upon the Parisi free
energy in [19].

Last but not least we have to find the continuous version of stability conditions (6a) and
(6b). It is again straightforward to use the above results and integral representation (18) to

10
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arrive at

�(x) = 1 − β2

〈
Ty exp

{∫ 1

x

dy χ̇(y)

[
1

2
∂2
h̄

+ m(y)g′(y, h + h̄)∂h̄

]}[
1 − t (x, hη + h̄)2

+
∫ x

0
dz χ̇(z)m(z)Ty exp

{∫ x

z

dy χ̇(y)

[
1

2
∂2
h̄

+ m(y)g′(y, h + h̄)∂h̄

]}
× (∂h̄t (z, hη + h̄))2

]
h̄=0

〉
η

� 0. (24)

It was shown in [19] that equality in equation (24) can be derived from a total derivative of
equation (23) with respect to variable x. It means that if equation (23) is fulfilled for all
variables x ∈ [0, 1], then �(x) = 0 as well. We thereby confirmed that the Parisi continuous
RSB solution is marginally stable. The spin-glass susceptibility has zero eigenvalue but no
negative ones.

3.3. Asymptotic solution near the de Almeida–Thouless instability line

We now explicitly solve the equations for the order parameters of the continuous RSB scheme
in the asymptotic limit to the AT line. We know from the discrete version that χ̇ (x) = 1 for
x ∈ [0, X] and vanishes elsewhere. We introduce a new dimensionless variable λ = x/X

that spans interval [0, 1]. The physical parameter X serves as an expansion parameter in the
asymptotic region near the AT instability line.

In the continuous limit we have two basic equations to solve. It is equation (21) for the
RS order parameter q and equation (23) from which we determine X and m(λ). It can be
shown that for x � X equation (22) is a total derivative of equation (23). There is thus no
inconsistency if we disregard equation (22) as a stationarity equation for the free energy of the
continuous RSB solution. We know from the preceding subsection that the total derivative of
equation (23) with respect to x expresses a marginal stability of the continuous RSB state.

The asymptotic solution near the AT line is a polynomial in variable X. We hence expand
all quantities to a necessary order in this parameter. The T-exponential on the right-hand side
of equation (23) must be expanded to X3. Further on, the order-parameter function becomes
also a polynomial in X. The relevant order parameters are then expanded as follows:

q = q0 + Xq ′
1 + X2q ′

2, (25a)

m(λ) = m0 + Xλm′
1. (25b)

We first use equation (21) to simplify equation (23) and then expand its right-hand
side to X3. Simultaneously we make use of the expansion of the order parameters from
equations (25a) and (25b). We obtain a cubic polynomial in λ. Coefficients at each power of
λ must vanish and we have three equations for parameters m0,m

′
1 and X. Parameters q ′

1 and
q ′

2 are determined from an expansion of equation (21). The explicit solution was calculated
with the aid of the programme MATHEMATICA and reads

q0 = 〈
t2
0

〉
η
, (26a)

q ′
1 = −

2β2(1 − m0)
〈
t2
0

(
1 − t2

0

)〉
η

1 − β2
〈(

1 − t2
0

)(
1 − 3t2

0

)〉
η

, (26b)

q ′
2 = − 〈Q2〉η

1 − β2
〈(

1 − t2
0

)
(1 − 3t2

0

〉
η

. (26c)

11
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Here we denoted

Q2 = (
1 − t2

0

) [(
β2(m0 − 1)

( − 7t2
0 +

(
5t2

0 − 3
)
m0 + 5

) − m′
1

)
t2
0

+
(
15

(
t2
0 − 1

)
t2
0 + 2

)
β2q ′2

1 − 2
(
10t4

0 − 9t2
0 + 1

)
β2(m0 − 1)q ′

1

]
.

The above solution is then used in the equations for X,m0,m
′
1. These three equations read

1 = 〈(
1 − t2

0

)2
β2

(
1 − 2Xβ2

(
m0

(
2t2

0 − (
37t4

0 + 22t2
0 − 1

)
Xβ2

) − Xm′
1t

2
0

+
(
7t2

0 − 3
)
Xβ2m2

0t
2
0

)
+ Xβ2 (

10t2
0 +

(
105t4

0 − 80t2
0 + 7

)
Xβ2 − 2

) )〉
η
, (27a)

0 = 〈(
1 − t2

0

)( − 2t2
0 − 2

(
21t4

0 − 14t2
0 + 1

)
Xβ2

+ m0
(
6
(
t2
0 − 1

)
Xβ2m0t

2
0 +

(−9t4
0 + 20t2

0 − 3
)
Xβ2 + 1 − t2

0

))〉
η
, (27b)

0 = 〈(
1 − t2

0

)(
m′

1

(
1 − t2

0

)
+ 2β2

(
1 − 3t2

0

)2
+ 3

(
t2
0 − 1

)
β2m0

(
8t2

0 +
(
t2
0 − 1

)
m0

))〉
η
. (27c)

We determine m′
1 from equation (27c), m0 then from equation (27b). The two parameters

we finally use in equation (27a) from which we calculate X. To find the leading asymptotic
behaviour of X we have to expand it in powers of the initial small parameter α measuring the
depth of penetration into the spin-glass phase. Parameter α was defined in equation (7) and
emerges in equation (27a) as an absolute, X-independent term. The solutions for X and m0

from the continuous RSB scheme then coincide in the leading order in α with the result for χ1

and m from the discrete 1RSB solution, equations (9) and (8), respectively. The last parameter
m′

1 has an explicit representation

m′
1 = −2�m

X
(28)

where again parameter �m was already determined within the discrete 2RSB scheme in
equation (10b). The asymptotic limit of the full solution near the AT line is hence completely
determined by the parameters from the two-step RSB solution.

4. Conclusions

We studied in this paper the behaviour of the replica-symmetry breaking solutions in the
discrete and continuous schemes. We started with the discrete one with K hierarchies and
2K + 1 order parameters q,�χ1,m1, . . . ,�χK,mK . Equations for these order parameters
were derived from a local maximum of a free energy and were explicitly solved in the
asymptotic limit to the AT instability line. This calculation served as an explicit manifestation
of the way the Parisi continuous RSB solution in the nonzero magnetic field is approached
in the limit K → ∞. We found that unlike in zero magnetic field, the RS solution is never,
even asymptotically, stable in the nonzero field below the AT line. The full solution in the
low-temperature spin-glass phase reduces near the AT line to the one-step RSB solution. We
found that

∑K
l=1 �χl = χ1 and ml do not depend in the leading asymptotic order on the

number of hierarchies K and are exactly determined by 1RSB. Further on, we demonstrated
that neither �m = K(ml−1 − ml)/2 for l � 2 depends on the number of hierarchies K used.
The characteristic parameters of the full asymptotic solution are completely set by 2RSB.
There is no other parameter characterizing the asymptotic limit to the AT line. Increasing
the number of hierarchies in free energy (1) does not change the values χ1 = ∑K

l=1 �χl and
�m. The new added order parameters χl,ml for l = 3, . . . , K are equidistantly distributed
between the edge values 0 � χl < χ1 and m1 − �m < ml < m1 + �m, where χ1 and m1 are

12
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calculated in 1RSB. These results explicitly prove that the discrete RSB scheme goes over in
the limit of infinite number of hierarchies to the Parisi continuous RSB solution.

We analysed the behaviour of the discrete RSB scheme in the limit K → ∞ also
generally. We performed this limit explicitly in the stationarity equations maximizing the
free energy with finite-many hierarchical levels. We derived in this way a set of equations
for the order parameters in the continuous limit. The equations for the order parameters
from the discrete RSB scheme go over in the continuous limit to two functional equations
for order-parameter functions χ̇(x) and m(x). Since the former function comes up only
under integrals over the index variable x ∈ [0, 1], its point-wise behaviour is irrelevant for the
physical quantities. The only significant information from χ̇ (x) is an integral

∫ 1
0 dxχ̇(x) = X.

We hence can disregard the defining equations for χ̇ (x) and take explicitly into account only
equations for the RS parameter q and for function m(x). Parameter X is determined from a
combination of the two equations. We do not lose any information by neglecting the defining
equation for χ̇ (x) that was shown to be a total derivative of the equation for m(x). This
feature expresses a degeneracy of the stationarity equations in the discrete RSB scheme. The
equations resulting from the continuous limit of the equations from the discrete scheme are
identical with those derived directly from the Parisi free energy via a saddle point in [19]. It
means that the local maximum of the Parisi free energy is a limit of local maxima of discrete
hierarchical free energies (1) when K → ∞. The continuous limit is analytical and all physical
quantities can be defined and calculated either directly from the Parisi free-energy functional
of [19] or from the limit K → ∞ of quantities introduced in the discrete scheme with free
energy (1).

The explicit asymptotic solution of the discrete KRSB scheme enabled the calculation of
its thermodynamic stability. We found that in the leading asymptotic order of the discrete
scheme all the stability conditions (6a) and (6b) coincide. Their value is negative for any
finite number of hierarchies K and approaches zero as K−2. The continuous scheme is
then marginally stable with no negative eigenvalue of the spin-glass susceptibility. The RS
solution is asymptotically stable in the leading order below the critical temperature only in
zero magnetic field. In the nonzero magnetic field the spin-glass state goes over asymptotically
to the one-step replica-symmetry-breaking solution (K = 1) that is marginally stable in the
leading order near the AT instability line.
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